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I. INTRODUCTION

Graphene is a remarkable system with many unusual
properties that was created for the first time only a few years
ago.1 �For reviews on graphene see, for example, Refs. 2–5.�
One of such properties is an unconventional quantum Hall
effect �QHE�. Instead of the ordinary QHE expected in the
case of two-dimensional nonrelativistic electron systems, an
anomalous quantization is observed in graphene.6,7 The ob-
servation appears to be in perfect agreement with the theo-
retical predictions,8–10 stating that the QHE plateaus should
occur at filling factors �= �4��n�+1 /2� where n is an inte-
ger. This anomalous quantization is a direct outcome of the
relativisticlike nature of the low-energy quasiparticles in
graphene described by a Dirac theory with an internal U�4�
symmetry.11,12

It is the U�4� symmetry, operating in the spin and
sublattice-valley spaces, that is responsible for the fourfold
degeneracy of the Landau energy levels and for the overall
factor of 4 in the filling factors of the observed plateaus, �
= �4��n�+1 /2�. Strictly speaking, the U�4� symmetry is not
exact but broken down to a smaller U�2�+�U�2�− symmetry
group by the Zeeman term. The latter symmetry operates in
the sublattice-valley space and does not mix spin-up �s=+�
and spin-down �s=−� states. When the magnetic field is not
too strong, a relatively small Zeeman term does not affect the
observable QHE in a qualitative way.

When the magnetic field becomes sufficiently strong, the
QHE plateaus �=0, �1, �4 are observed.13–16 This sug-
gests that the fourfold degeneracy of the Landau levels �LLs�
is lifted. The new plateaus may be explained by one of the
following seemingly different theoretical scenarios: �i� quan-
tum Hall ferromagnetism �QHF�,17–21 which is connected
with the theory of exchange-driven spin splitting of Landau
levels.22 The QHF order parameters are densities of the con-
served charges connected with three diagonal generators of
the non-Abelian subgroup SU�4��U�4� �the dynamics of a
Zeeman spin splitting enhancement considered in Ref. 23 is
intimately connected with the QHF�; �ii� the magnetic cataly-
sis �MC� scenario24–27 that is based on the phenomenon of an
enhancement of the density of states in infrared by a mag-

netic field, which catalyzes electron-hole pairing �leading to
excitonic condensates� in relativisticlike systems.28–30 This
scenario invokes electron-hole pairing and excitonic conden-
sates to produce dynamically generated Dirac-type masses in
the low-energy theory.

Recently, by analyzing a gap equation for the propagator
of Dirac quasiparticles, it has been found in Refs. 31 and 32
that the QHF and MC order parameters necessarily coexist.
As will be shown in the present paper, this feature could
have important consequences for the dynamics of edge states
in the QHE in graphene.

The study of edge states is of general interest because
such states provide a deeper insight into the quantum Hall
effect.33 Currently there exist many studies of edge states in
graphenelike systems.10,23,34–43 In Refs. 23 and 38, it was
found that in the presence of a magnetic field there may exist
gapless modes of such states and they should play an impor-
tant role in charge transport of graphene near the Dirac neu-
tral point. The gapless modes were shown to appear when
the lowest Landau level �LLL� was split by a spin gap, or in
other words, by enhanced Zeeman splitting leading to the �
=0 plateau. Such gapless states were absent, though, in the
case of a Dirac mass gap.15,23

While the presence of the gapless edge states should make
graphene a so-called quantum Hall metal, their absence
should make it an insulator.15,23 The actual temperature de-
pendence of the longitudinal resistivity at the �=0 plateau in
Refs. 13 and 15 is consistent with the metal type. Thus, it
was argued that the origin of the �=0 plateau is connected
with the enhanced spin �ferromagnetic� splitting of the
LLL.15,23

The conclusion of Refs. 15 and 23 regarding the origin of
the �=0 plateau does not appear to be universal however.
The recent data from Ref. 16 reveal a clear plateau at �=0,
but the temperature dependence of the diagonal component
of the resistivity signals a crossover to an insulating state in
high fields. This does not seem to support the existence of
gapless edge states. So, one may ask whether there is indeed
a Dirac-type mass gap and no spin gap in the device studied
in Ref. 16.

Motivated by this question and a theoretical analysis in
Refs. 31 and 32, the spectrum of edge states has been re-
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cently studied under the assumption that the removal of sub-
lattice and spin degeneracies in graphene in a strong mag-
netic field is connected with the generation of both Dirac
masses and spin gaps.42 The main result of that work was
establishing a criterion for the existence of the gapless edge
states in the QHE in graphene on a half plane with a zigzag
or armchair edge. It was concluded that the controversy be-
tween the experimental results in Refs. 15 and 16 may reflect
richer and more complicated dynamics in the QHE in
graphene than those considered in the QHF and MC sce-
narios.

In the present work, we extend the analysis in Ref. 42 to
the case of a finite width graphene ribbon. The characteristic
feature in our approach is combining analytic and numerical
methods in the analysis of the edge states. This allows one to
describe the main features of the quasiparticle spectrum and,
in particular, to extend the criterion obtained in Ref. 42 to a
more complicated and interesting case of a graphene sample
with two boundaries, which in turn yields a deeper insight in
physics behind this criterion.

This paper is organized as follows. In Sec. II, we discuss
the low-energy field-theoretical model of graphene with MC
and QHF dynamical order parameters used in the rest of the
paper. An overview of the general formalism for studying
edge states of a finite width graphene ribbon in an external
magnetic field is given in Sec. III. The numerical analysis in
the case of zigzag and armchair edges is presented in Secs.
IV and V, respectively. The discussion of the main results
and their experimental implications are given in Sec. VI.

II. QHF AND MC ORDER PARAMETERS
IN GRAPHENE

For convenience of the analysis of the edge state, the
chiral representation of the Dirac matrices will be used here
�see, for example, Ref. 5�,

�0 = �̃1
� �0 = �0 I

I 0
�, �i = − i�̃2

� �i = �0 − �i

�i 0
� ,

�1�

�5 � i�0�1�2�3 = �̃3
� �0 = � I 0

0 − I
� , �2�

where �̃i ,�i are the Pauli matrices and �0 is the 2�2 unit
matrix. The spinor field of Dirac quasiparticles �sT

= ��K+A
s ,�K+B

s ,�K−B
s ,�K−A

s � combines the Bloch states on two
valleys �K+ and K−� and two sublattices �A and B� and s is
the spin index. The QHF order parameters are the spin den-
sity ��†Ps�� and the pseudospin density ��†�5Ps��, with
P�= �1��3� /2 being the projectors on states with spin di-
rected along �+� and opposite �−� the magnetic field. These
order parameters are related to the chemical potentials 	s and
	̃s, respectively. On the other hand, the MC order parameter
is the vacuum expectation value of the Dirac mass term

��̄�3Ps�� associated with the conventional Dirac mass 
̃s

�here �̄=�†�0�.
Recently, a unifying approach, combining and augment-

ing both QHF and MC mechanisms, was proposed in Refs.

31 and 32. By analyzing the gap equation with a local Cou-
lomb interaction and using a multiparameter variational an-
satz for the quasiparticle propagator, it was found that �i� the

new MC order parameter ��̄�3�5Ps��, related to a Dirac
mass 
s that breaks time-reversal symmetry,12 has to be
added and �ii� the QHF and MC order parameters necessarily
coexist. �Let us emphasize that in the presence of an external
magnetic field, the time-reversal symmetry is broken and a
state with the vanishing 
s is not protected by any symme-
try.�

More precisely, it was shown in Refs. 31 and 32 that for a
fixed spin, the full inverse quasiparticle propagator takes the
following general form �in the chiral representation used in
this paper�:

iGs
−1�u,u�� = 	�i��t + 	s − 	̃s�

5��0 − vF�� · �� − 
̃s�
3

+ 
s�
3�5
�3�u − u�� , �3�

where � is the canonical momentum and the parameters 	s,

	̃s, 
s, and 
̃s are determined from the gap equation. Note
that the full electron chemical potentials 	� include the Zee-
man energy Z with

Z � 	BB = 0.67B	T
 K. �4�

By making use of the explicit form of the spinor, we find
the following correspondence among the four types of order
parameters and the electron densities �the spin index is omit-
ted�:

	 → ��†�� = nK+A + nK−A + nK+B + nK−B, �5�

	̃ → ��†�5�� = nK+A − nK−A + nK+B − nK−B, �6�


 → ��̄�3�5�� = nK+A − nK−A − nK+B + nK−B, �7�


̃ → ��̄�3�� = nK+A + nK−A − nK+B − nK−B, �8�

where the nK+A, nK−A, nK+B, and nK−B are the densities of
quasiparticles at specified valleys and sublattices. The QHF
order parameters associated with 	 and 	̃ are the total den-
sity of electrons with a given spin and the density imbalance
between the two valleys, respectively. Note that the MC or-

der parameter related to the conventional Dirac mass 
̃ de-
scribes the density imbalance between the A and B sublat-
tices �i.e., a charge-density wave as interpreted in Refs.
24–27 and 29�. The value of the singlet Dirac mass 
 	see
Eq. �7�
 controls a mixed density imbalance at the two val-
leys and the two sublattices.

In terms of symmetry, these order parameters can be
divided in two groups. The order parameters ��†Ps��
and ��̄�3�5Ps�� �related to 	s and 
s� with nonequal
values for s=� break the approximate U�4� symmetry just
like the Zeeman term, and they are singlets under the non-
Abelian subgroups SU�2�s�U�2�s with the generators
Ps � �−i�3 /2,�3�5 /2,�5 /2�. Since these singlet order param-
eters break no exact symmetries of the action, they are not
the order parameters in the strict sense. Yet, because of a
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relative smallness of the “bare” Zeeman energy Z and a sig-
nificant dynamical part in 	s and 
s, it is appropriate to talk
about approximate spontaneous symmetry breaking. In the
model in Refs. 31 and 32, these two order parameters coexist
and play a crucial role in the solution corresponding to the
�=0 plateau.

The order parameters of the other type, ��†�5Ps�� and

��̄�3Ps��, �associated with 	̃s and 
̃s� are triplets under
SU�2�s�U�2�s. Each of these two order parameters de-
scribes spontaneous SU�2�s symmetry breaking down to
U�1�s with the generator Ps � �5 /2. In the model in Refs. 31
and 32, these two order parameters coexist and play an im-
portant role in the solution corresponding to the �= �1 pla-
teaus �as well as to the plateaus �= �3 and �= �5, which
have not been observed yet�.

III. LANDAU LEVELS AND EDGE STATES

In accordance with the discussion in Sec. II, we assume
that both ferromagnetic-like and masslike gaps coexist in
general. Our goal is to find the spectrum of edge states in
such a theory.

The structure of the inverse quasiparticle propagator in
Eq. �3� implies that in the most general case, the quadratic
part of the effective Hamiltonian for quasiparticles of spin s
takes the following form in the first quantized theory:

Ĥs = Ĥ0 − 	s − 	̃s�
5 − 
s�

0�3�5 + 
̃s�
0�3. �9�

The free part of the Hamiltonian reads

Ĥ0 = vF��1�x + �2�y� , �10�

where vF�106 m /s is the Fermi velocity. By definition, �i
=�0�i and the canonical momentum is �i=−i��i+eAi /c.
Here the vector potential is taken in the Landau gauge, Ax
=−By and Ay =0, where B is the magnitude of a constant
magnetic field orthogonal to the xy plane of graphene.

The parameters 	s, 	̃s, 
s, and 
̃s are determined from
the gap equation. In particular, in the model in Refs. 31 and
32, the S1 solution �in the nomenclature of Ref. 32� near the
Dirac neutral point, corresponding to the �=0 plateau, has
the following form:


̃� = 	̃� = 0, 	� =  Z  A, 
� = � M , �11�

where for the values of magnetic fields B�45 T utilized in
the experiments in Refs. 13–16, the dynamical parameters A
and M are considerably larger than Z and M �A. The value
of the spin gap in this solution is 
E=2M +2�Z+A�. Note
that it is essentially larger than the spin gap 
E=2�A+Z� in
the QHF scenario.23 While the problem of calculating the

values of 	s, 	̃s, 
s, and 
̃s is not addressed in this study, it
should be clear that in an actual device they are determined
by �i� the strength of the magnetic field, �ii� the temperature,
and �iii� other sample-specific parameters �e.g., the mobility
of carriers, the size and geometry, the type of the substrate,
etc.�. In practice, we analyze the spectrum of edge states in
the model described by the model Hamiltonian in Eq. �9�.

In general, in a finite geometry case, the magnitude of the
exchange and Hartree interactions which determine the val-

ues of the parameters 
s, 
̃s, 	s, and 	̃s is likely to vary with
the distance from the edge and should be calculated in a
self-consistent way. The present study of the edge states is
done assuming uniform gaps and uniform chemical poten-
tials, and so it captures qualitative but probably not the quan-
titative aspects of the edge-state physics �see also a related
discussion in the end of Sec. VI�.

When written in components, the Dirac equation corre-
sponding to Hamiltonian �9� takes the following form:

�E + 	�+� + 
�−� �vF�iDx + Dy�
�vF�iDx − Dy� E + 	�+� − 
�−� ���K+A

�K+B
� = 0, �12�

�E + 	�−� + 
�+� − �vF�iDx + Dy�
− �vF�iDx − Dy� E + 	�−� − 
�+� ���K−B

�K−A
� = 0.

�13�

Here the covariant derivative Di=�i+ �ie /�c�Ai and the

shorthand notations 	����	�	̃ and 
����
�
̃ were in-
troduced �the spin index s was omitted�. In each of the two
sets of equations, the B components of the wave function can
be eliminated,

�K+B =
�vF�− iDx + Dy��K+A

E + 	�+� − 
�−� , �14�

�K−B =
�vF�iDx + Dy��K−A

E + 	�−� + 
�+� . �15�

By taking these into account, we derive the equations for the
A components,

�− l2Dx
2 − l2Dy

2 + 1��K+A = 2�+�K+A, �16�

�− l2Dx
2 − l2Dy

2 − 1��K−A = 2�−�K−A, �17�

where ��= 	�E+	����2− �
���2
 /�0
2, l���c / �eB� is the

magnetic length, and �0��2�vF
2 �eB� /c is the Landau energy

scale. Note that �+��−� is related to the K+�K−� valley.
In the Landau gauge A= �−By ,0�, the wave functions are

plane waves in the x direction. Thus, we write

�K+A�r,k� =
eikx

�2�l
u+�y,k�, �K+B�r,k� =

eikx

�2�l
v+�y,k� ,

�18�

�K−A�r,k� =
eikx

�2�l
u−�y,k�, �K−B�r,k� =

eikx

�2�l
v−�y,k� .

�19�

The envelope functions u��y ,k� and v��y ,k� depend only on
a single combination of the variables, �=y / l−kl, and satisfy
the following equations:

���
2 − �2  1 + 2���u���� = 0, �20�

EDGE STATES ON GRAPHENE RIBBONS IN MAGNETIC… PHYSICAL REVIEW B 79, 115431 �2009�

115431-3



v���� =
�0���  ��u����

�2�E + 	���  
���
. �21�

Note that the wave vector k determines the center of the
electron orbital along the y direction, yk=kl2. Then, as we
shall see below, for a system with a ribbon geometry, e.g.,
0�y�W, the condition of finite energy will be satisfied only
for eigenstates with wave vectors k in a finite range, 0�k
�W / l2. This is known as the position wave-vector duality in
the Landau gauge. �Note that the maximum value of the
wave vector k, measuring the displacement from either K+ or
K− point, is limited by the boundaries of the first Brillouin
zone. However, this fact is not explicit in the low-energy
theory.�

The general solution to Eqs. �20� and �21� is given in
terms of the parabolic cylinder �Weber� functions U�a ,z� and
V�a ,z�,44

u+��� = C1
E + 	�+� − 
�−�

�0
U�1 − 2�+

2
,�2��

+ C2V�1 − 2�+

2
,�2�� , �22�

v+��� = − C1U�−
1 + 2�+

2
,�2�� − C2

E + 	�+� + 
�−�

�0

�V�−
1 + 2�+

2
,�2�� , �23�

u−��� = C3U�−
1 + 2�−

2
,�2�� + C4

E + 	�−� + 
�+�

�0

V�−
1 + 2�−

2
,�2�� , �24�

v−��� = C3
E + 	�−� − 
�+�

�0
U�1 − 2�−

2
,�2��

+ C4V�1 − 2�−

2
,�2�� . �25�

Note the following relations with the parabolic cylinder
functions D��z�:

U�a,z� = D−a−1/2�z� , �26�

V�a,z� =
��a + 1/2�

�
	sin��a�D−a−1/2�z� + D−a−1/2�− z�
 .

�27�

In an infinite system, the normalizable wave functions con-
tain only the parabolic cylinder U functions which are bound
at z→ �� provided that a=−n−1 /2 and n is a non-negative
integer. In fact, the following relation is valid: U�−n
−1 /2,z�=2−n/2e−z2/4Hn�z /�2�, where Hn�z� are the Hermite
polynomials. In this case, the spectrum is determined by
��

�bulk�=n with n=0,1 ,2 , . . ..
In the case of a graphene ribbon of a finite width in the y

direction, 0�y�W, and with two zigzag edges parallel to
the x direction, the A and B components of wave functions
should vanish on the opposite edges,23,38 i.e.,

y = 0: u+�− kl� = u−�− kl� = 0, �28�

y = W: v+�W/l − kl� = v−�W/l − kl� = 0, �29�

see Fig. 1. In principle, by satisfying these equations and
using the wave-function normalization conditions, we can
determine all four integration constants in Eqs. �22�–�25�.
For our purposes here, however, it suffices to determine the
conditions when nontrivial normalizable solutions exist.
These will provide the dispersion spectra of all modes in a
ribbon of graphene. The corresponding numerical analysis is
presented in Sec. IV.

In the case of a graphene ribbon with armchair edges
parallel to the y direction, it is convenient to choose a differ-
ent Landau gauge with �Ax ,Ay�= �0,Bx�. Accordingly, the
solutions are translation invariant along the y direction,

�AK�r,k� =
1

�2�l
eikyu+�x,k�, �BK�r,k� =

1
�2�l

eikyv+�x,k� ,

�30�

y

x

A

A

A

A

B

B

B

B

Missing atoms of type B

Missing atoms of type A
y�0

y�W

y

x

A

A

A

A

A

A

A

B

B

B

B

B

B

B

x�0 x�W
(b)(a)

FIG. 1. �Color online� The lattice structure of a finite width graphene ribbon with zigzag �a� and armchair �b� edges.
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�AK−
�r,k� =

1
�2�l

eikyu−�x,k�, �BK−
�r,k� =

1
�2�l

eikyv−�x,k� .

�31�

Then, the corresponding differential equations for functions
u��x ,k�, which are rewritten in terms of the dimensionless
variable �=x / l+kl, coincide with Eq. �20�. The expressions
for the eliminated components v����, however, slightly differ
from Eq. �21� and are given by

v���� =  i
�0���  ��u����

�2�E + 	���  
���
. �32�

The general solutions for the u���� functions have the same
form as in Eqs. �22� and �24�,

u+��� = C1
E + 	�+� − 
�−�

�0
U�1 − 2�+

2
,�2��

+ C2V�1 − 2�+

2
,�2�� , �33�

u−��� = C3U�−
1 + 2�−

2
,�2�� + C4

E + 	�−� + 
�+�

�0

�V�−
1 + 2�−

2
,�2�� , �34�

but with �=x / l+kl. By using the relations in Eq. �32�, we
also obtain the explicit expression for v���� functions,

v+��� = iC1U�−
1 + 2�+

2
,�2�� + iC2

E + 	�+� + 
�−�

�0

�V�−
1 + 2�+

2
,�2�� , �35�

v−��� = iC3
E + 	�−� − 
�+�

�0
U�1 − 2�−

2
,�2��

+ iC4V�1 − 2�−

2
,�2�� . �36�

Since the armchair edges have lattice sites of both A and B
types, the wave function should vanish both at the x=0 and
x=W lines,23,36,38

x = 0: u+�kl� + u−�kl� = 0, v+�kl� + v−�kl� = 0, �37�

x = W: u+�W/l + kl� + u−�W/l + kl� = 0,

v+�W/l + kl� + v−�W/l + kl� = 0. �38�

It is important to notice that the armchair boundary condi-
tions mix the chiralities associated with the K+ and K− val-
leys, which makes the analysis more involved than in the
case of zigzag edges. The details are given in Sec. V.

IV. NUMERICAL RESULTS IN THE CASE
OF ZIGZAG EDGES

Let us start from the boundary conditions at K+ valley, see
Eqs. �28� and �29�. They take the following explicit form:

C1
E + 	�+� − 
�−�

�0
U�1 − 2�+

2
,− �2kl�

= − C2V�1 − 2�+

2
,− �2kl� , �39�

C1U−
1 + 2�+

2
,�2�k0 − k�l�

= − C2
E + 	�+� + 
�−�

�0
V−

1 + 2�+

2
,�2�k0 − k�l� ,

�40�

where k0�W / l2 is determined by the width of the ribbon. A
nontrivial solution to this set of equations exists when

�+U�1 − 2�+

2
,− �2kl�V−

1 + 2�+

2
,�2�k0 − k�l�

− U−
1 + 2�+

2
,�2�k0 − k�l�V�1 − 2�+

2
,− �2kl� = 0.

�41�

A similar condition is derived at K− valley,

�−U1 − 2�−

2
,�2�k0 − k�l�V�−

1 + 2�−

2
,− �2kl�

− U�−
1 + 2�−

2
,− �2kl�V1 − 2�−

2
,�2�k0 − k�l� = 0.

�42�

By solving Eqs. �41� and �42� numerically, we determine the
dependence of the dimensionless energy parameters �+ and
�− on the wave vector k. The results for two different widths
of graphene ribbons, W=5l and W=10l, are shown in Fig. 2.

When the width of the ribbon is less than about three or
four times the magnetic length l�257 Å /�B	T
, we find
that the spectra have a little overlap with the usual bulk spec-
tra, i.e., ��

�bulk�=n where n is a non-negative integer. Addi-
tionally, the separation between the nearest levels quickly
increases with decreasing W.

For the case W=5l, shown in the left panel of Fig. 2, only
the lowest level may have a hint at the middle plateau devel-
oping. However, when the ribbon width is larger than about
six or seven times the magnetic length, nearly flat plateaus
are already distinguishable in the lowest levels around the
central wave vector 1

2k0. We also find that the lower the level,
the wider the plateau formed.

Let us also emphasize the following special feature of the
spectrum in a graphene ribbon with zigzag boundaries. As
we see from Fig. 2, for �+�0 �actually, E�−	�+�+
�−�� and
for �−�0 �actually, E�−	�−�+
�+��, dispersionless surface
solutions23,38 exist at both valleys �note that such solutions
exist also in the case with no magnetic field35,39�. These so-
lutions are bound to the k�0 and k�k0 edges for the K+ and
K− valleys, respectively. It is noticeable that unlike the case
of a half plane,42 they cease to be dispersionless at the op-
posite edges, i.e., at k�k0�k�0� for the K+�K−� valley, re-
spectively.
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Now, by restoring the spin index, we assemble the com-
plete spectrum of a graphene ribbon described by Hamil-
tonian �9� with dynamical order parameters proposed in
Refs. 31 and 32,

EsK+

����n,k� = − 	s
�+� � ��+�n,k��0

2 + �
s
�−��2, �43�

EsK−

����n,k� = − 	s
�−� � ��−�n,k��0

2 + �
s
�+��2. �44�

Notice that there exist eight sublevels that correspond to the
lowest Landau level. Only half of these correspond to the
bulk states, i.e., those which remain normalizable on an infi-
nite graphene plane. The other half has wave functions local-
ized only at the edges. In fact, using the properties of the
parabolic cylinder functions, one can show that in the coor-
dinate space, the wave functions of the additional branches
of solutions �i.e., those which disappear on an infinite plane�
are localized near either y=0 or y=W edges of the ribbon for
all values of the quantum number k �the nonbulk states�. In
other words, the earlier-mentioned position wave-vector du-
ality can be used only for the description of the branches of
the bulk states.

By making use of the numerical results for �+ and �−, we
can plot the actual energy spectra in the system. For the
ribbons of widths W=5l and W=10l, these are presented in
Figs. 3 and 4. Here the choice of the order parameters re-
sembles those of the solution in Eq. �11�, corresponding to
the Dirac neutral point, i.e., the �=0 plateau.31,32 However,

in order to lift the degeneracy of all sublevels, we also added
small nonzero values for the triplet chemical potentials 	̃�.

By considering different relative strengths of ferromag-
netic and mass gaps in Figs. 3 and 4, we see that there exist
gapless edge states �whose energy vanishes at certain values
of k� only when the ferromagnetic gap dominates over the
mass gap, i.e., �	s

����� �
s
���. �The values of wave vectors

that give gapless modes are marked by the dots in the spectra
in Fig. 3.� From Fig. 2, we can see that ���0,k� is non-
negative and approaches zero at certain values of the wave
vector. This feature together with dispersion relations �43�
and �44� makes it clear that the necessary and sufficient con-
dition for the existence of gapless modes is that at least one
of the inequalities �	s

�−��� �
s
�+�� and �	s

�+��� �
s
�−�� is satisfied

for at least one spin choice.
So far, we have considered only the case with nonzero

singlet Dirac masses. However, as is clear from Eqs. �43� and
�44�, the results for nonzero triplet Dirac masses will look
exactly the same as in Figs. 3 and 4. At first sight, this might
appear to be surprising because the symmetry properties of
the two types of the masses are different; while the triplet
masses break the SU�2�s valley symmetries, the singlet
masses do not. Let us turn to the discussion of this point.
First of all, the corresponding symmetry is exact only on an
infinite plane. As to a finite width ribbon, it is explicitly
broken by the boundary conditions there, as seen from the
comparison of Eq. �41� for the K+ valley and Eq. �42� for the
K− valley. This is also obvious from the solutions for �� in
Fig. 2. On the other hand, although one might expect that the
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FIG. 2. �Color online� Numerical results for the dimensionless parameters �+ �solid lines� and �− �dashed lines� in the case of ribbons
with zigzag edges. The ribbon widths are W=5l �a� and W=10l �b�.
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FIG. 3. �Color online� Numerical results for the low-energy spectra for ribbons with zigzag edges. The ribbon widths are W=5l �a � and

W=10l �b�. The ferromagnetic gaps and dynamical masses are as follows: 	�= 0.08�0, 	̃�=0.01�0, 
�= �0.02�0, and 
̃�=0. The
ferromagnetic gap dominates over the mass gap, insuring the presence of gapless edge states �marked by dots�. The electron spins of the
lowest-energy sublevels are marked by arrows. The spectra around the K+�K−� point are shown by solid �dashed� lines.
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symmetry arguments are to be approximately applicable to
the states with intermediate values of the wave vector k in a
bulk of a ribbon, both these types of the Dirac masses still
lead to the same spectra there. This puzzle is resolved as
follows. As was already emphasized above, one should dis-
tinguish between the bulk states and nonbulk ones on a rib-
bon. The dispersion relations in the ribbon bulk for the
former approximately coincide with those of the states on an
infinite plane. In the case of the LLL, they are EsK+

=−	s
�+�+
s

�−� and EsK−
=−	s

�−�+
s
�+�.31,32 The point is that on

the ribbon, the asymmetry of this spectrum for 
̃s�0 is
washed away by the inclusion of four additional nonbulk
branches, which are localized exclusively on the edges and
whose energies are approximately given by similar expres-
sions but with the opposite signs in front of 
s

���. As for
higher LLs, it is known that their energies do not depend on
the type of Dirac masses even on an infinite plane provided
that only a mass of one type is present.31,32 Thus, on a rib-
bon, the sublevel structure of the LLL becomes similar to that
of higher LLs.

It is instructive to compare the properties of the solutions
on a finite width ribbon with those on a half plane.42 First of
all, instead of the eight sublevels of the LLL on a ribbon,
there are only six ones on a half plane. The reason for that is
of course connected with the fact that each edge adds two
additional sublevels connected with two orientations of spin.
Second, unlike the case of a ribbon, there are LLL sublevels
which are dispersionless for all values of k on a half plane.
This feature can be also easily understood. As the width W of
a ribbon goes to infinity, the edge k=k0 disappears and the
solutions which are bound to the edge k=0 become disper-
sionless for all values k�0.

In relation to the dispersionless modes, we would like to
add the following comment. Because of level crossing, there
is an ambiguity in the definition of a single branch of solu-
tions in the LLL. By mixing together the two branches asso-
ciated with different valleys, one can construct a new branch
that is approximately dispersionless for all values of k, just as
seen in numerical calculations.43 As should be clear from our
analytical analysis, however, such a branch is only approxi-
mately dispersionless for intermediate values of the wave
vector k.

V. NUMERICAL RESULTS IN THE CASE OF ARMCHAIR
EDGES

Let us now consider the case of the armchair edges. Since
the armchair boundary conditions �37� and �38� mix the
chiralities associated with the K+ and K− valleys, this case is
essentially more complicated for both the analytic and nu-
merical analyses on a ribbon.

The explicit form of the boundary conditions �37� and
�38� reads

C1
E + 	�+� − 
�−�

�0
U�1 − 2�+

2
,�2kl� + C2V�1 − 2�+

2
,�2kl�

+ C3U�−
1 + 2�−

2
,�2kl� + C4

E + 	�−� + 
�+�

�0

�V�−
1 + 2�−

2
,�2kl� = 0, �45�

C1U�−
1 + 2�+

2
,�2kl� + C2

E + 	�+� + 
�−�

�0

�V�−
1 + 2�+

2
,�2kl� + C3

E + 	�−� − 
�+�

�0

�U�1 − 2�−

2
,�2kl� + C4V�1 − 2�−

2
,�2kl� = 0,

�46�

C1
E + 	�+� − 
�−�

�0
U1 − 2�+

2
,�2�k − k0�l�

+ C2V1 − 2�+

2
,�2�k − k0�l�

+ C3U−
1 + 2�−

2
,�2�k − k0�l� + C4

E + 	�−� + 
�+�

�0

�V−
1 + 2�−

2
,�2�k − k0�l� = 0, �47�
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FIG. 4. �Color online� Same as Fig. 3 but with the ferromagnetic gaps and dynamical masses being as follows: 	�= 0.02�0, 	̃�

=0.01�0, 
�= �0.08�0, and 
̃�=0. The mass gap dominates over the ferromagnetic gap, insuring the absence of gapless edge states.
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C1U−
1 + 2�+

2
,�2�k − k0�l� + C2

E + 	�+� + 
�−�

�0

�V−
1 + 2�+

2
,�2�k − k0�l�

+ C3
E + 	�−� − 
�+�

�0
U1 − 2�−

2
,�2�k − k0�l�

+ C4V1 − 2�−

2
,�2�k − k0�l� = 0, �48�

where k0=−W / l2. It is a homogeneous system of four linear
equations for four unknown constants Ci, i=1,2 ,3 ,4. The
nontrivial solution exists when the determinant of a matrix
made of the coefficients is zero. We numerically solve the
corresponding equation to determine the spectrum of single-
particle states in the graphene ribbon.

The cases with nonzero singlet �
s� and triplet �
̃s� Dirac
masses are studied separately. Numerical results for singlet
masses are shown in Fig. 5. We find that gapless edge states
always appear when there are only Zeeman-type �QHF� gap
and singlet Dirac masses 
s, irrespective of the actual rela-
tion between their values. We conclude, therefore, that for
the case of a singlet Dirac mass, the condition for the exis-
tence of gapless modes is less constrained at the armchair
edges than at the zigzag ones. In fact, this result should have

been expected after recalling that the singlet Dirac masses do
not break the global valley symmetry groups SU�2�s�U�2�s.
These symmetries �one for spin up and the other for spin
down� protect the double degeneracy of the Landau levels in
the bulk. The property of such sublevels in the LLL is that
they repel in opposite directions near the edges both in the
absence of singlet Dirac masses and when they are present.
The latter leads to gapless states. �Note that in this argument
we implicitly use the fact that the energy separation of the
sublevels may become arbitrarily large. This is not true on a
lattice. However, even on the lattice the energy separation
may become much larger than the dynamical scale of the
mass, suggesting that the conclusion is still valid in that
case.� In fact, the absence of gapless modes on a ribbon with
zigzag edges and �
s�� �	s� is a special property, which is
related to the dispersionless nature of the LLL modes at the
edges with k�0 or k�k0.

Let us now turn to a triplet Dirac mass. We found that the
analysis of the energy spectra can be considerably simplified
in the case of nonzero triplet Dirac masses but vanishing 	̃s
and 
s. The central observation is that in this case the deter-
minant of the matrix corresponding to Eqs. �45�–�48� can be
reduced to factorized form, and the spectral equation be-
comes

f+�k,��f−�k,�� = 0, �49�

where, by definition, �= 	�E+	�2− 
̃2
 /�0
2 and

f��k,�� = U−
1 + 2�

2
,�2�k − k0�l�V�1 − 2�

2
,�2kl� − U�−

1 + 2�

2
,�2kl�V�1 − 2�

2
,�2�k − k0�l�

+ ��U1 − 2�

2
,�2�k − k0�l�V�−

1 + 2�

2
,�2kl� − U�1 − 2�

2
,�2kl�V−

1 + 2�

2
,�2�k − k0�l��

� ���U1 − 2�

2
,�2�k − k0�l�V�1 − 2�

2
,�2kl� − U�1 − 2�

2
,�2kl�V1 − 2�

2
,�2�k − k0�l�

+ U−
1 + 2�

2
,�2�k − k0�l�V�−

1 + 2�

2
,�2kl� − U�−

1 + 2�

2
,�2kl�V−

1 + 2�

2
,�2�k − k0�l�� . �50�
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FIG. 5. �Color online� Numerical results for the low-energy spectra for a ribbon with armchair edges of width W=10l in the case of
nonzero spin splitting and nonzero singlet masses. Nonzero dynamical parameters are as follows: 	�= 0.02�0, 
�= �0.08�0 �a� and
	�= 0.08�0, 
�= �0.02�0 �b�. Gapless edge states �marked by dots� are present in both cases. The electron spins of the lowest-energy
sublevels are marked by arrows.
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Restoring the spin index again, the complete energy spec-
trum takes the form

Esn�k� = − 	s � ���kl,n��0
2 + 
̃s

2, �51�

where n=0,1 ,2 , . . .. Our numerical results for several lowest
branches of � versus kl are presented in Fig. 6. Note that
��kl ,n��n at intermediate values of kl. This means that the
low-energy spectrum of a finite width ribbon far from the
edges should be approximately the same as the spectrum of
graphene on an infinite plane.

The energy spectrum in the case of triplet Dirac masses
are shown in Fig. 7. As seen from the figure, the presence of
gapless modes in the spectrum sensitively depends on the
relation between the values of the Zeeman-type �QHF� gaps

and the triplet Dirac masses 
̃s. Such modes exist only when
the magnitude of the Dirac mass is less than the QHF gap.

The physics underlying this result is clear. When �
̃s�� �	s�,
the valley splitting is large and there are two LLL branches
of states with opposite signs of their energies for each direc-
tion of the spin 	see Eq. �51� and the left panel of Fig. 7
. As
a result, repelling of these branches at the edges does not
lead to the creation of gapless modes. On the other hand, in

the case of �
̃s�� �	s�, shown in the right panel of Fig. 7 	see

also Eq. �51�
, the valley splitting is small, the energies of the
two branches have the same sign, and the process of their
repelling at the edges inevitably creates gapless modes. In
essence, this is the same condition as that for zigzag edges in
a system with triplet Dirac masses studied in Sec. IV,

�
̃s� � �	s� . �52�

VI. DISCUSSION

The main result in this paper is establishing the criterion
for the existence of gapless modes among the edge states in
a graphene ribbon with zigzag and armchair type edges. The
method used in this paper combines analytic and numerical
approaches that allows one to get a deeper insight into the
nature of edge states.

In the case of zigzag edges, gapless modes exist when the
ferromagnetic �Zeeman-type� gap dominates over the mass
gap of any type or, more formally, when any of the condi-
tions �	s

����� �
s
��� are satisfied for at least one spin choice

s=�. This is consistent with the two limiting cases analyzed
in Ref. 15.

For a ribbon with armchair edges, the condition for the
existence of gapless modes is more involved however. In this
case, it depends on the actual type �singlet or triplet� of the
dynamical Dirac mass induced. For singlet Dirac masses,
there always exist gapless modes. On the other hand, for
triplet masses, gapless modes exist only when there is a suf-
ficiently large ferromagnetic �Zeeman-type� gap that domi-
nates over the masses.

One of the most interesting consequences of our finding
here is a possibility of resolving the seemingly contradicting
interpretations of the �=0 plateau in terms of either quantum
Hall metal or insulator regimes.15,16 As follows from Eq.
�11�, the criterion for the existence of gapless edge states at
the Dirac neutral point takes the simple form Z+A�M �note
that since a boundary of real graphene samples consists of
both zigzag and armchair edges,2 it is appropriate to use the
more constrained condition for the existence of gapless
modes corresponding to the zigzag edges�. As pointed in
Refs. 31 and 32, this condition implies the existence of a
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FIG. 6. �Color online� Numerical solutions of Eq. �49� for the

dimensionless parameter �= 	�E+	�2− 
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 /�0
2 in the case of arm-

chair edges when 	̃=
=0. In the higher Landau levels, n�1, the
solutions to the equations f−�k ,��=0 and f+�k ,��=0 are shown by
the solid and dashed lines, respectively.
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FIG. 7. �Color online� Same as Fig. 5 but for the case of nonzero triplet masses. Nonzero dynamical parameters are as follows: 	�

= 0.02�0, 
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̃��. The electron spins of the lowest-energy sublevels are marked by arrows.
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critical value of the transverse magnetic field B�cr�, where the
insulator regime switches to the metallic one. A crude esti-
mate for this value yields 0.01�B�cr��200 T for an effec-
tive coupling constant � taken in the interval
0.02���0.2.32 As one can see, B�cr� is very sensitive to the
choice of �. In order to fix the values of � and B�cr� more
accurately, one should utilize more realistic models of
graphene that incorporate consistently disorder among other
things.45,46 This is a topic for future studies however.

There is another possibility to explain the experimental
results in Ref. 16. As shown in Ref. 32, besides the S1 solu-
tion �11�, there is another, triplet �T�, solution around the
Dirac neutral point corresponding to the �=0 plateau in the
model of Refs. 31 and 32. In the T solution, while both
spin-up and spin-down quasiparticle states have a triplet

Dirac mass 
̃�=M, the chemical potentials 	� are small,
	�= Z. Therefore, there are no gapless edge states for this
solution and it describes the quantum Hall insulator regime.
Calculating the difference of the free energy densities for
these two solutions, it was shown32 that it is the Zeeman term
which makes the S1 solution more favorable; without it, the
S1 and T solutions would correspond to two degenerate
ground states. On the other hand, as pointed out in Ref. 20
�see also Refs. 25, 47, and 48�, there are small on-site repul-
sion interaction terms on the graphene lattice which favor the
triplet solution �such terms were ignored in the model in
Refs. 31 and 32�. It would be interesting to figure out the role
of these terms in choosing the genuine ground state in the
present dynamics at different values of a magnetic field.

In the future, it would be interesting to extend the present
analysis by considering inhomogeneous QHF and MC order
parameters, which should be consistently determined from
the gap equation. Such inhomogeneous order parameters on
a ribbon with zigzag edges in a magnetic field can be ex-

pected because they exist on ribbons with the zigzag edges in
the absence of a magnetic field.35,49–51 The point is that as a
consequence of the nearly dispersionless �flat� subbands, a
peak in the density of states occurs near the zigzag edge,
resulting in an ordered magnetic phase even at zero magnetic
field.35 In the presence of a strong magnetic field, however,
the MC and QHF order parameters alone remove the degen-
eracy of the dispersionless states with opposite spins 	or
pseudospins related to the SU�2�s symmetries discussed in
Sec. II
. This means that the edge magnetism �or pseudomag-
netism� may at least partially be captured by the homoge-
neous order parameters already included in this paper. Of
course, it would be important to re-examine these arguments
in more detail in future studies.
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